
2021/22

Comprehensive Creative Technologies Project:

How Do We Develop a Tool for

Procedurally Generate a Functional 3-

Dimensional Dungeons.

Alessandro Bufalino

alessandro2.bufalino@live.uwe.ac.uk

Supervisor: Joshua Hompstead

Department of Computer Science and Creative Technology

University of the West of England

Coldharbour Lane

Bristol BS16 1QY

Abstract

Procedural generation is a technique widely used in the game industry to create game environments and

maps. However, using the existing tools and implementing the algorithms can be difficult for users who
are not that technically proficient. This report presents a downloadable asset pack for the Unity game

engine that introduces a custom editor, in which the user can pick between the offered generational
algorithms based on the user’s needs. The user-friendly custom editor allows the user to customize the
parameters of each algorithm to their liking with the additional generation of more rooms and other paths.
The asset pack also can act as a library so the user does not have to use the built-in custom editor but can
use the different algorithms in other scopes.

mailto:alessandro2.bufalino@live.uwe.ac.uk

2022/23

Alessandro Bufalino 19017120

2

Keywords: Procedural Generation Algorithms, Unity Asset, Heuristic evaluation, Unity Editor.

Brief biography

Since the start of my journey in computer science, I have always found the automation of tasks to be a

fascinating area of programming, which has sparked my interest in procedural generation and artificial
intelligence. This project has allowed me to create an asset pack that I see myself using in my future

projects, as it provides quick access to various algorithms and more.

Website Portfolio: https://alessandrobufalino3115.github.io/

How to access the project

The project code base is divided into two github repos:

1) Repo for the developlment of the asset pack --
https://github.com/AlessandroBufalino3115/Dissertation_PGC

2) The asset pack to install into unity via the package installer --

https://github.com/AlessandroBufalino3115/Dungeon-Forge

For the Wiki -- https://github.com/AlessandroBufalino3115/Dungeon-Forge/wiki

Project Video URL -- https://youtu.be/7DBc7ZwA-ss

1. Introduction

In the constantly evolving landscape of video

game development, procedural content
generation (PCG) has emerged as a powerful tool

to create diverse and engaging game
environments. With the rise of indie game
studios (Stephenson, 2022), who often face
limited resources and tight budgets, the need for

efficient and cost-effective development solutions

is more pressing than ever. This project aims to
develop a PCG tool specifically designed for
generating dungeons for the Unity game engine
(Unity Technology, 2005), with a focus on
algorithm selection, seamless export processes,

and efficient user interfaces (UI).

The importance of this project lies in the ability
to streamline the level design process,
particularly for indie developers. By automating

the generation of dungeon map layouts,
developers can save valuable time and
resources, enabling them to focus on other

crucial aspects of game design.

The inspiration for this project arose from the

previously mentioned increase in the number of
indie game studios, coupled with the popularity
of procedurally generated content in the gaming

industry. Investigating this subject is worth
pursuing, as it has the potential to significantly
impact the quality and efficiency of game

development.

1.1 Project Objectives

• Develop a user-friendly PCG tool for

generating diverse and engaging
dungeon environments in Unity.

• Design an efficient and intuitive UI to

streamline the dungeon generation
process for developers.

• Give the ability for the user to use their
own assets when generating the 3D
version of the dungeon.

1.2 Key Deliverables

• Develop software that contains

procederal generation algorithms such as
Wave Function Collapse, Cellular

Automata, Binary Space Partitioning, and
more.

• A customizable set of parameters for
each algorithm, allowing designers to
have more control over the generated

dungeon environment and tailor it to
their specific requirements.

• A downloadable asset pack for the Unity
game engine.

https://alessandrobufalino3115.github.io/
https://github.com/AlessandroBufalino3115/Dissertation_PGC
https://github.com/AlessandroBufalino3115/Dungeon-Forge
https://github.com/AlessandroBufalino3115/Dungeon-Forge/wiki
https://youtu.be/7DBc7ZwA-ss

2022/23

Alessandro Bufalino 19017120

3

2. Literature review

2.1 When to use or not use PCG

Many games employ Procedural Content
Generation (PCG) to varying degrees. Some, like
Battlefield 3 (DICE, 2011), use tools like

SpeedTree (Interactive Data Visualization, Inc.
2002) to create unique trees for their expansive

multiplayer maps. Others, such as Spelunky
(Mossmouth, 2013), base their entire gameplay
on procedural generation to create captivating
and non-repeating levels. While generated

content can be enticing, it also introduces
challenges, particularly with the "lack of control"
it gives designers (van der Linden, Lopes, and

Bidarra, 2014). With PCG, outcomes depend on
the implementation of the algorithm, leading to

possible unpredictability. However, for genres
like dungeon crawlers, which typically favour
fast-paced gameplay, PCG can offer benefits like
uniqueness and endless possibilities, resulting in

a different type of game with high replayability,
as experienced in Enter the Gungeon (Devolver

Digital, 2016).

2.2 What is the definition of a dungeon in
videogames

Dungeons in real life differ greatly from those in

games. Game designers must consider
replayability and level design, among other
factors, to maintain player engagement. Shaker
et al. (2016) defines RPG dungeon levels as

“labyrinthic environments, consisting mostly of
interrelated challenges, rewards and puzzles,

tightly paced in time and space to offer highly
structured gameplay progressions”. Furthermore,
Dahlskog et al. (2015) propose a classification
system for dungeons after analysing various

games, resulting in five classes:

• Open Area Dungeons: Wide open spaces.

• Mazes: Multiple paths leading to one

room.

• Labyrinth: Singular paths spanning the
whole dungeon.

• Connected Rooms: Rooms connected

with each other with no corridors.

• Rooms and Corridors: Rooms connected
with each other via corridors.

Each class has unique characteristics and is

chosen based on the desired gameplay outcome.
For instance, 'open area dungeons' emphasize
character movement and can accommodate
larger battles or ranged combat, Like in Enter the

Gungeon (Devolver Digital, 2016). The Binding of

Isaac Rebirth (Nicalis, Inc. Edmund McMillen,

2014) uses the connected rooms Layout to
maintain a high pace without unnecessary breaks
between rooms. Another reason for selecting a

particular class may be performance; corridors
can be used to hide rooms and save resources.
Implementing occlusion culling allows developers

to improve performance by not rendering objects
hidden from the player's view. By strategically
placing corridors to hide certain rooms, games
can potentially save computational resources and

maintain smoother gameplay experiences.

2.3 How to build an engaging tool/software
UI

When providing users with multiple options for

dungeon creation, it is essential to have an

intuitive and efficient UI layout, as Anderson et
al. (2010) explains that doing this will minimize
the time and frustration needed to accomplish
the desired goal from the user. McKay (2013)
tries to break down what an “intuitive” UI really

means but brings up the fact that for “most

people the definition of intuitive is, well, intuitive
itself”. Nevertheless, McKay additionally, explains
the most common attributes of a fully user-
appreciated UI:

• Discoverability: Clear start and end point.

• Understandability: Quick understanding
of what the UI element does.

• Affordance: Contains visual properties
that give hints to the user of the
element’s usage.

• Predictability: UI delivers what it expects.

• Efficiency: minimum number of inputs
needed to perform an action.

• Responsive Feedback: Give the user

feedback that the action has been

initiated.

• Forgiveness: the ability to undo or fix a
“miss input.”

• Explorability: The UI is free to be

explored before any commitments.

2.4 Previous Existing Tool for PCG

Within the Unity ecosystem, several other level

procedural generation assets packs can be found.
Two notable examples include Roguelike
Generator Pro - Level Dungeon Procedural
Generator (RGP) (Nappin, 2022) and Dungeon

Architect (DA) (Code Respawn, 2022).

2022/23

Alessandro Bufalino 19017120

4

RGP is an asset pack that focuses on generating

procedurally designed dungeons, with a primary
emphasis on roguelike games. It offers
customizable parameters and a user-friendly

interface, allowing developers to create various
dungeon layouts and room configurations. The
main strengths of RGP lie in its ease of use and

the ability to generate interconnected dungeons
specifically tailored for roguelike games. This
strength of RGP is important because it helps
streamline the development process and ensures

a consistent gameplay experience across
different levels for the user. Another strength of

the asset pack is its ability to create 2D, 2.5D,
and 3D levels, catering to a wide range of visual
styles and game types.

DA, on the other hand, is a more versatile

procedural generation tool that can be used for
creating more complex types of game
environments, including dungeons, caves, and
outdoor terrains. It comes with a powerful visual
node-based editor, which enables developers to

design their levels by connecting various building

blocks. DA's flexibility stems from its modular
approach, allowing developers to combine
different components to create unique level
structures. Its extensive features cater to

different game genres, making it a valuable tool
for a broader range of projects. This flexibility is
crucial for developers as it provides the freedom

to create diverse and engaging game
environments, ultimately enhancing the player
experience.

Figure 1: Example UI from one of the options in

Dungeon Architect (Code Respawn, 2022)

3. Research questions

The main research question for this report is:
How do we develop a tool to procedurally
generate a functional 3-dimensional dungeon.

This can further be broken down into additional

research questions:

• What role do procedural generation
algorithms play in optimizing the

development process and maintaining
the balance between level design quality
and resource constraints?

Procedural generation algorithms streamline the
development process by automating the creation
of diverse environments, saving time and

resources. Fine-tuning these algorithms allows
developers to prioritize performance, visual
appeal, or gameplay mechanics, aligning with

their goals and available resources.

• What are the essential features and

design considerations for a custom editor
in Unity and how can they be

implemented and evaluated?

A custom Unity editor should incorporate a clean
and intuitive user interface, easy access to

algorithm selection and parameter adjustment.

Additionally, it should be able to walk the user
step by step to ensure undesired behaviours do
not occur. A heuristic evaluation approach can be
performed on the Editor UI to self-assess its
usability and effectiveness.

• What are the limitations and challenges

of using procedural generation for level
generation and how can they be

addressed in future research and
development?

Procedural generation can generate
repetitiveness, lack of control over the design,
and it is important to consider possible

performance headroom needed to run these
algorithms. Future research and development
can address these challenges by exploring new,

more high-performance ways to write the
existing algorithms and enhancing customization
options.

4. Research Method

The research methodology for this project will

involve secondary research, focusing on journals,
books, and research papers published in the
fields of procedural generation, game-related
applications, and the creation of efficient user
interfaces. The primary resources for locating

relevant sources will be Google Scholar and

Google Books, chosen for their extensive
databases and ease of use.

To find pertinent papers, specific keywords

derived from the central research question's
theme were used, including:

• UI in software
• PCG in games
• Procedural generation algorithms
• Dungeons in Games

2022/23

Alessandro Bufalino 19017120

5

The rationale behind choosing these source types

lies in their comprehensive explanations and in-
depth coverage of the subject matter. These
sources serve as reliable references, providing

sufficient insight into each algorithm, which is
crucial for the development and expansion of the
artifact.

Self-serving bias is a cognitive bias where
individuals attribute their successes to internal
factors and their failures to external factors. This

can lead to distorted perceptions and evaluations
of one's own abilities or work (Forsyth, 2008). In

the context of this project, as it is subject to self-
evaluation, there is a risk of self-serving bias
affecting the assessment of the artifact's
functionality and outcome.

To mitigate self-serving bias, a set of binary
goals was established at the beginning of the
project. Binary goals are clear and objective,
with either a "yes" or "no" outcome, leaving little
room for biased interpretation. The established

goals are as follows:

• Implement at least 4 of the basic

algorithms chosen from the initial
proposal, including:

o Cellular Automata.
o Perlin noise.
o Perlin Worms.

o Voronoi Generation.
o Wave Function Collapse.

• Allow the mixing of algorithms to give
the user more control.

• The generator outputs 3D environment
for the user to build upon.

• Build an in-Editor Interface for the user
to use the tool.

These goals will serve as indicators of not only

the project's progress but also the overall

functionality of the artifact. An additional
evaluation criterion involves assessing how
closely the generated dungeon resembles and
feels like those found in other games. As part of
the project's objective is to create a ready-to-

design dungeon layout for games, it is essential

to incorporate features that have proven
effective in previous games.

Moreover, a crucial aspect of the project, which

will determine its success, is the ability to export
the created product as a .FBX file and by allowing

users to implement the artifact via the package
manager in the Unity engine, importing the
package into their own projects.

By setting binary goals, the evaluation process

becomes more objective, reducing the impact of
self-serving bias on the assessment of the
project's success.

5. Ethical and professional principles

With the introduction of Procedural Content
Generation (PCG) within a project, there is the
possibility that job roles may be overtaken by a
computer, depending on the scope of the

system's integration. For example, in the case of
the developed artifact, the goal is to provide

users with different ways to create a map for
their game. This means that a level designer's
position might be partially filled by the system,
with professionals still needed to give overall

direction to the developers regarding the level's

appearance.

This gradual job takeover is reminiscent of the
current trend with Artificial Intelligence (AI) and
robots. "Fewer people work in manufacturing

today than in 1997, thanks in part to

automation" (Rotman, 2013). While AI and PCG
differ in many ways, they share some common
principles, such as the ability to perform
repetitive tasks quickly. Computers and

machines excel in this field, whether it is quickly
prototyping a new map using PCG or performing
monotonous movements like a robot.

To minimize the impact of the artifact on
potential job positions, it is essential to

implement as many features and characteristics
as possible without making the tool too complex
for individual developers. By offering scalable

complexity, the project can cater to a single
developer's needs while still allowing a level
designer to delve deeper into creating the perfect

level. This approach ensures that the tool
remains an asset without eliminating job
opportunities for professionals in the field.

Furthermore, to ensure inclusivity and

accessibility of the tool for a diverse range of
users, it is important to include features that
accommodate disabilities such as dyslexia or
colour blindness. For example, in the future, this
could be done by increasing the font size or

changing the colour of the buttons in relation to

the background of the editor. By prioritizing
accessibility and inclusivity in the design of the
custom Unity editor, the tool becomes more
versatile and user-friendly, promoting broader

adoption and a more inclusive game
development community.

2022/23

Alessandro Bufalino 19017120

6

6. Research findings

6.1 Advantages and disadvantage of PCG in
Dungeon Generation

One of the most significant findings in the
research phase was the trade-offs involved in

whether to use PCG in dungeon generation. The
analysis of various games revealed that PCG
could offer increased replayability and
uniqueness in dungeon crawlers, such as Crypt of

the NecroDancer (Brace Yourself Games, 2015).
These advantages directly influenced the decision

to implement PCG in the dungeon generation
tool, as it provided the potential for creating a
more engaging and dynamic experience for
players.

However, the research also highlighted the
challenges of unpredictability and lack of control
over outcomes associated with PCG, as noted by
van der Linden et al. (2014). This finding
emphasized the importance of incorporating

customizable parameters in the dungeon

generation tool, to allow designers to exert more
control over the output generated. Additionally,
the concept of user intervention mechanisms,
such as before the generation of the level, where

the user can individually change the tile type to
their liking, can help users correct or even open
sections of the generated dungeon to fix issues

or connect different parts of the game that are
not related to the dungeon generation. By
considering user-defined settings in the design

process, a dungeon generation tool can address
some of the drawbacks of PCG while still
benefiting from its advantages.

6.2 Characteristics and Impact of Different
Dungeon Types in Games

The classification system proposed by Dahlskog,
Björk, and Togelius (2015) proved to be
invaluable for understanding the unique

characteristics of each dungeon type and their

impact on gameplay. The analysis revealed that
the choice of dungeon type could significantly
influence the player's experience, dictating
factors like pacing, level design, and resource
management.

For example, the research showed that 'open
area dungeons' can emphasize character
movement and accommodate larger battles or
ranged combat, as seen in Enter the Gungeon

(Devolver Digital, 2016). On the other hand, the
connected rooms method, used in The Binding of

Isaac Rebirth (Nicalis, Inc. Edmund McMillen,
2014), maintains a high pace without
unnecessary breaks between rooms. These
findings led to the inclusion of multiple dungeon

generation options and inclusion of even more
algorithms that were previously proposed in the

tool, allowing designers to choose the type best

suited for their intended gameplay experience.

6.3 Principles of Effective UI Design for

Dungeon Generation Tools

The research on intuitive and efficient UI design,

as presented by Anderson et al. (2010) and
McKay (2013), guided the development of the
dungeon generation tool's user interface. The
identified attributes of user-friendly UI, such as

discoverability, understandability, and efficiency,
informed the layout and design choices for the

tool. By prioritizing these principles, the tool's UI
minimizes the time and frustration needed for
users to achieve their desired goals.

Figure 2: The final UI of the tool with the random walk
algorithm (Appendix D) chosen as the main algorithm.

Incorporating these research findings on effective
UI design, the dungeon generation tool delivers

an enhanced user experience, allowing designers
to effortlessly create engaging and dynamic

dungeons.

2022/23

Alessandro Bufalino 19017120

7

6.4 Comparison and Analysis of Existing

PCG Tools

Analysing popular existing PCG tools within the

Unity ecosystem, such as Dungeon Architect
(DA) and Roguelike Generator Pro - Level
Dungeon Procedural Generator (RGP), led to the

identification of essential features and
functionality that could be incorporated into the
project. These findings significantly influenced
the development process and the features

included in the final version of the tool.

The analysis highlighted the importance of
comprehensive documentation and wikis to
explain the product at hand, regardless of its
simplicity. Users' concerns regarding DA's

documentation (Code Respawn, 2022) quality

informed the decision to provide a detailed wiki
for the project. This ensures that users have
access to a reliable source of information and
guidance, improving the overall user experience.
Furthermore, the research revealed that users

wished to have a way to save the generated

dungeon layouts for future use and access. This
finding guided the decision to include this feature
in the project, adding a layer of convenience to
the tool. This allows users to revisit and refine

their creations without the fear of losing a
potentially useful layout they might want to
utilize later.

Furthermore, a user (nappin, 2022) noted that
the shapes of the generated structures by RGP

were not that varied. This finding led to the
decision to implement even more algorithms that
were not previously mentioned in the project,

enabling the generation of even more unique and
interesting dungeon designs. By providing
designers with a richer set of options to explore

and implement in their projects, the personal
project sets itself apart from the more
predictable structures generated by RGP. This
emphasis on diversity and creativity in dungeon

layouts ensures that the project offers a robust

and versatile solution for game developers,
striving to make the tool adaptable to a wide
range of genres.

6.5 Impact of Research Findings on Tool

Development and Project Stages

The research findings played a crucial role in
shaping the development and direction of the
dungeon generation tools. They provided insights

into the advantages and disadvantages of
implementing PCG into games, contributed to the

creation of an intuitive UI that users can easily

interact with, and informed the comparison and

analysis of existing PCG tools. By examining
customer reviews, the research helped identify
essential features and areas for improvement.

Collectively, these findings guided the tool's
development, ensuring its adaptability and
relevance to a wide range of genres and user

needs.

7. Practice

This section will delve into the critical aspects of
the project's implementation, focusing on the

most significant components that contributed to
the project's success. This section will discuss the
standardization of algorithm input and mixing,
user interface (UI) and custom editor

development, user's ability to add their own

assets, performance optimization and debugging,
and documentation and code quality. Each topic
will be thoroughly explored, including the
challenges faced and the methods employed to
overcome them.

7.1 Standardization of algorithm input and
mixing

The development process began with planning a

class to standardize the inputs and outputs for all
algorithms and functions used, which was a
crucial step as it allowed for seamless integration

and mixing of different algorithms through a
single class. The class was essential for
effectively managing and standardizing the

inputs and outputs for all algorithms and
functions used in the project, it contains multiple
variables.

As the project progressed, it became evident that
some algorithms complimented each other well,

creating a unique and interesting dungeon when
combined. For instance, the cellular automata
(Appendix D) algorithm is a standard addition as
a step (if the player desires to use it) for most of

the algorithms available, this is due to its ability

to either cut generated structures in the layouts
to create rooms or to just smooth out the shape
that the outcome will be (Figure 3). Moreover,
this is also supported by the ability choose which
iteration of the cellular automata to run on the

current generated layout, to either run the full

iteration of the algorithm where things will be
added and taken away, or to run the stage where
to only take away tiles. The ability to mix and
match algorithms based on their individual

strengths and weaknesses allowed for a greater
variety of dungeon designs and increased the

tool's overall versatility.

2022/23

Alessandro Bufalino 19017120

8

Showing the progression of using the cellular automata algorithm to refine the initial generation created by the random walk
algorithm.

Stage 1: Shows the initial random walk output.
Stage 2: Demonstrates how using the clean-up variation of the cellular automata algorithm creates independent rooms.

Stage 3: Displays the result of using the normal iteration of the cellular automata algorithm to fill in gaps and smooth out the
rooms.

Another significant product of the standardization

of algorithms was that, although a handful of
algorithms were in a bubble of their own, such as

the L-system (as this algorithm is grammar-
based), there is still the ability to mix entire
canvases together at the stage before the
generation of the 3D dungeon. This allows for the

mixing of different generated maps that

previously used different main algorithms,
therefore giving the ability to mix two or more
different kinds of layouts.

Figure 3: Showing two canvases being merged, one from the
L-System algorithm and one from the Perlin worms
(Appendix D) to create two distinguished sections to the
dungeon.

However, the Wave Function Collapse (WFC)
(appendix D) algorithm proved to be an
exception. The WFC had to be in its own bubble
and could not be mixed with other algorithms

because of its nature, which is not based on
weight or the current cell's status but on the

current asset that is next to the cell. This
inherent difference meant that the WFC had to
be treated separately, preventing it from being
combined with the other algorithms in the same

way.

7.2 UI and custom Editor

The custom editor was designed with simplicity

and efficiency in mind, allowing users to quickly
access and understand all the available settings
each algorithm could offer.
One of the most noteworthy achievements in this

stage was the implementation of a custom

window for creating rulesets for the WFC
algorithm. This was made possible by utilizing
the experimental GraphView package (Unity
Technologies, 2023) provided by Unity, which
offers a flexible and extensible framework for

creating custom node-based graph interfaces.

The WFC algorithm requires a ruleset that
dictates the arrangement of tiles, and the custom
editor graph system was created to streamline
this process. The graph system consists of three

types of nodes:

1. Main Rule node: This node has four
inputs (left, right, up, and down) and
represents a specific tile. Users can

connect other nodes to these inputs to
define the tile's connectivity rules.

2. Sub Rule node: This node represents a

side tile and connects to one of the
inputs of the Main Tile node, specifying

the allowed connection for that side of
the main tile.

3. Quick Rule node: This node has

checkboxes for left, right, up, and down,

rather than inputs, and is used for tiles

that can connect to any other tile. Users
can simply check the relevant boxes to
define the connectivity rules for this tile,
making it a more efficient option when

dealing with tiles that have no

restrictions on their connections.

2022/23

Alessandro Bufalino 19017120

9

Figure 4: Showing the 3 nodes available in the custom
graphing environment for the WFC algorithm.

By utilizing these nodes, users can easily create
and modify the ruleset for the WFC algorithm,
ensuring their desired dungeon generation
outcome.

7.3 User’s ability to add their own assets

The dungeon generation tool provides users with
multiple options to create 3D dungeons that

cater to their specific needs and preferences. By

offering two distinct generation methods: tile

generation and mesh generation.

Tile generation allows users to define the types
of tiles that make up the floors, ceilings, and

walls, as well as control the spawn ratio for each
tile type. This ensures that the final dungeon

generation aligns with the desired aesthetics and
design while still maintaining the procedural
nature of the tool. Additionally, to ensure
compatibility with the broadest range of tiles,

users will be prompted to specify whether the
tiles being used are directional or non-directional
before initiating the generation process. In this

context, "non-directional" means the user is
using cubes as tiles to generate the dungeon,
and their orientation is not important. In

contrast, when using "directional" generation,
the walls will be generated so they always face
the outer side of the dungeon.

Figure 5: Block generation example having a cube per tile.

Figure 6: Multiple objects per tile to maximise space and
contour with the outside tiles.

On the other hand, mesh generation leverages
the marching cubes algorithm to create a 3D
mesh backbone that can be imported into 3D

modelling softwares like Blender (1994) and
Maya (1998) for further customization and

manipulation. This option provides users with
even more flexibility, as they can refine the
dungeon design beyond the capabilities of the
generation tool, tailoring it to their specific

requirements and artistic vision.

Figure 7: Showing the mesh vertices generation from the
outside (left) and inside (right). Dungeon algorithm used is
the diffusion limitation algorithm (Appendix D).

Furthermore, after the user has created their 3D

dungeon, they can provide their own world
object assets, which the tool will place
throughout the environment using the Poisson
disc sampling algorithm (Appendix D). This

algorithm allows for an optimized distribution of
objects with an element of randomness, ensuring
that the placement appears natural and visually

appealing while avoiding excessive clutter. Users
can dictate the radii used by the Poisson
algorithm and the ratio at which different object

assets are spawned, offering greater control over
the density and distribution of the objects within
the dungeon. Moreover, users can determine the
height at which these objects spawn, which

means they could choose to spawn objects

containing lights. By adjusting the radii, users
can create either gloomy or bright scenes.

2022/23

Alessandro Bufalino 19017120

10

Figure 8: Showing the random positioning of "debris"
around the map, with the grey box being 4 times as likely to
appear in the map.

7.4 Performance Optimization and
Debugging

Performance optimization and debugging played
a crucial role in the development of the tool.
Ensuring that the project ran smoothly and
efficiently was vital to providing a positive user

experience.

One of the first performance-related challenges
encountered during development was the flood
fill algorithm, which is used to determine the
boundaries of each room currently on the

canvas. The initial implementation utilized a

recursive algorithm, leading to stack overflow
issues when the canvas size exceeded 400 by
400. The issue stemmed from the fact that each
function call in a recursive algorithm is placed on
the stack, which has a limited size. To address

this problem, the algorithm was redesigned using

a standard loop instead of recursion, eliminating
the need for additional stack allocations. This
modification not only resolved the stack overflow
issue but also improved the performance of the

algorithm, as using a loop is generally less
resource-intensive compared to placing multiple
function calls on the stack.

Another performance optimization implemented
during the project was the introduction of a

chunk system for the 3D dungeon generation.
When users choose to provide their own tile sets
for the dungeon generation stage, many objects
are instantiated in the scene. This is because,

depending on the size of the canvas, each
coordinate is potentially an object, with the

height also needing to be considered. Because
many objects can be created, a chunk system
was implemented to try and reduce the number
of objects drawn in every update. The chunk

system is only available when the game starts,

and the user has the choice of which objects to
draw chunks around. This allows for even
multiple setups where two players are in different
sections, and the chunk system can still work,

additionally providing the ability to choose how

many chunks to draw around the player for even
more performance and customizability.

Figure 9: Showing the chunk system on the left not drawing
the sections of the dungeon not close to the user to save on
performance.

Finally, parallel programming in C# was
employed as a performance optimization

technique during the development process. By
utilizing the ‘System.Threading.Tasks.Parallel’
namespace, array loops were processed more
efficiently by distributing the workload across

multiple CPU cores, leading to faster execution
times. This parallelism allows for concurrent

execution of multiple iterations of the loop, thus
significantly improving the processing speed.
However, it is important to note that parallel
programming introduces additional complexity,

such as potential race conditions or

synchronization issues. Therefore, algorithms

that depend on multiple loops in sequence, such
as the Voronoi algorithm (appendix D), which
has one loop to deal with the algorithm itself and
another loop to handle the drawing of the rooms,

were not suitable for parallel processing. On the
other hand, algorithms such as Cellular Automata

have seen great improvement with parallel
programming, achieving up to an 80% reduction
in time taken, as shown in Figure 10.

Figure 10: Showing the difference in time taken to run the
cellular automata algorithm for a 1000 by 1000 grid.

Debugging was an essential aspect of the
project, as identifying and fixing errors and

performance bottlenecks was crucial to
maintaining the tool's functionality and efficiency.
The flood fill issue mentioned earlier is an

example of a bug that was identified and
resolved during the debugging process. By
continuously monitoring the tool's performance

and addressing any issues that arose, the project

2022/23

Alessandro Bufalino 19017120

11

was able to achieve its goals and provide a

versatile and efficient dungeon generation
solution.

7.5 Documentation and Code Quality

Documentation and code quality played a

significant role in the efficiency of this project's
development. By ensuring clear documentation
and well-organized, maintainable code, the tool
became easier to understand, modify, and

expand upon by others.

One of the measures taken to maintain high-
quality code was adhering to a specific coding
standard, which helped promote consistency and
readability across the project. In this case, the

typical C# coding conventions (Microsoft, 2023)

were followed, which include guidelines such as
using PascalCase and camelCase for naming.
PascalCase capitalizes the first letter of each
word in a compound word or phrase (e.g.,
FunctionName), while camelCase capitalizes the

first letter of each word except for the first one

(e.g., localVariable). The conventions dictate
using PascalCase for method and property
names, and camelCase for local variables. By
following these conventions, the codebase

became more accessible to others who may be
familiar with the C# language and its common
practices.

Another aspect of maintaining code quality was
the use of a version control system – specifically,

GitHub (2008). This allowed for easy tracking of
changes and a means to revert to previous
versions of the code when necessary. For

instance, during the transition to the asset pack
implementation, the setup of assembly files
required for C# and Unity to recognize the asset

pack presented minor yet substantial complexity.
To mitigate potential risks, a backup of the
project was created in case major issues arose,
and reverting was necessary. Additionally,

GitKraken (2014), a graphical user interface for

Github, was used as a visual aid to better
understand the repository's history and changes.
This combination of tools made it easier to
manage the codebase and ensure its stability
throughout development.

Figure 11: View from the GitKraken application of the main
GitHub repo of the project showing the saving of the
progress before major changes and tests to the codebase.

8. Discussion and outcomes

The primary contribution of this research lies in

the development of a versatile procedural
dungeon generation tool that accommodates
multiple algorithms and the ability to mix

different algorithms together. This innovation
allows for the creation of unique and engaging
dungeons by leveraging the strengths and
weaknesses of various algorithms, resulting in

diverse layouts that can be tailored to specific
game design requirements. A key aspect of this

achievement is the standardization of the classes
used by each algorithm, which streamlines their
integration and usage within the tool, enhancing
user experience and providing more control over

the generation process. By enabling the
combination of different algorithms, the tool

provides game developers with a powerful means
to create a wide range of dungeon environments,
enhancing the overall gaming experience.

The creation of a wiki to support this versatile

procedural dungeon generation tool further
enhances its practical applicability in the game
development process. Additionally, the creation
of a documentation simplifies the integration of
the tool into existing game development

workflows and provides developers with an
accessible and organized framework for utilizing

the various algorithms and features of the tool in
their own projects.

8.1 Evaluation of the Generated Layout

The expressive range of the tool's generated

dungeon layout is essential for its overall
success. In this case, the layout refers to the
generated 3D model or 2D texture representing

the structure of the dungeon, which designers
can use as a starting point for their level design.
As Smith et al. (2010) suggest, the generator's
worth is better judged by the style and range of

levels it can create. The layout generator in this
project offers a multitude of base algorithms,

parameters, and customization options, enabling
designers to craft a diverse range of outcomes.

2022/23

Alessandro Bufalino 19017120

12

This, in turn, allows striking a balance between

creative input and automation, leading to more
efficient and effective level design processes.
Furthermore, the high-level parameters and

features provide designers control over the
potential placement of gameplay properties,
while the generator handles most of the design

work.

A crucial aspect of the layout's usability as a base
for level creation is its ability to generate a solid

foundation that designers can build upon and
modify to suit their specific requirements. The

layout generator is designed to create and act as
a canvas to which the user can add their own
gameplay mechanics with ease, whilst keeping
the complexity of the generation as a key selling

point. By providing a robust and adaptable

starting point, the layout generator streamlines
the level design process, enabling designers to
focus on refining and polishing their levels.

The adaptability of the layout generator is

another essential factor when evaluating its

usability for level creation. As Pérez-López et al.
(2011) mention, it would be advantageous,
especially for small game developers, if level
generators did not require reconstruction or

recoding for specific games. In this project, the
layout generator is designed to be adaptable
across different games and genres. By creating

layouts suitable for various types of games, the
tool demonstrates its versatility, making it an
asset for developers with diverse needs.

Additionally, its ability to cater to different design

requirements and preferences allows users to

create levels that accommodate a wide range of
gameplay styles, further emphasizing the layout
generator's adaptability and potential for use in

different game development contexts.
Furthermore, when evaluating the generator
output in the context of the classes proposed by

Dahlskog et el. (2015), the layouts generated do
match what each of the classes’ main descriptive
features. This alignment with the established
dungeon classes demonstrates the generator's

ability to cater to various gameplay styles and
preferences, further highlighting its versatility

and adaptability in the field of procedural
dungeon generation.

Evaluating the layout generator's ability to

support gameplay beyond roguelike games is

also crucial. Dormans (2010) notes that while
some algorithms excel at creating roguelike
games, their output often supports limited
gameplay. A useful layout generator should be
able to create levels that enable a wide range of

gameplay styles, rather than being confined to a

specific genre or style. The tool developed in this
project provides numerous customization options
and parameters that facilitate the creation of
diverse layouts which can be imported into any

genre, for example, the room-to-room
generation could be integrated into a building
layout the user can explore in an exploration

game, demonstrating its capacity to support
various gameplay styles and genres beyond
roguelike games.

To evaluate the dungeon layout generator's effectiveness and versatility, a table will compare the dungeon
types defined by Dahlskog et al. (2015) with the tool's output. The table includes the dungeon type, a

detailed description from Dahlskog et al., a real game example, and a version generated by the tool. This
comparison addresses the criterion mentioned in the methodology section, assessing the resemblance
between the generated dungeons and those found in other games or asset packs.

Dungeon
Type

Description Real Game Examples Tool’s Generated Layout Algorithms &
Comparison

Connected
Rooms

This type of
dungeon

primarily

features a
series of
discrete,
interesting

sites or rooms
connected

without explicit
corridors,
pathways, or
tunnels.

Players move
from one room
to another,

with each

Figure 12: Minimap from the game

Moonlighter showing rooms connected to
rooms (Moonlighter Wiki, 2018)

A simple random room
generation was used,

ensuring the rooms

were adjacent to each
other. The generated
layout closely
resembles the

Connected Rooms style
found in games like

Moonlighter, with
seamless connections
between rooms being
the strong point. The

weak point might be a
lack of variety in room
shapes.

2022/23

Alessandro Bufalino 19017120

13

room often
serving as a

focal point.

Rooms &

Corridors

Sparse

dungeons with
few rooms
joined by

simple, non-
branching
corridors.

Figure 13: Map from the game Rouge (Epyx,
inc., 1985)

Random room

allocation was
employed, and the
rooms were connected

using the A*
pathfinding algorithm.
The generated layout is

similar to the level
found in the game
Rogue.

Labyrinths Unicursal
structures with
a single path

leading
through the

dungeon.

Figure 14: Map proposed by the creator of

shattered pixel (Debenham, 2017).

Random room
allocation was used,
with Cellular Automata

applied to the rooms
for more variation. The

rooms were connected
using a Bezier curve to
lay down the corridor.
The generated layout is

comparable to the
generation shown in

Figure 14, due to its
universal nature that is
also demonstrated in
the example, with the

occasional off-leading
path.

Mazes Multicursal
layouts with
multiple paths

leading
through the

dungeon.

Figure 15: Breakdown of a level found in the

game called Legend of Grimrock (Game Guide,
2016)

Perlin noise was used
to create small rooms
across the canvas, and

they were connected
using the A*

pathfinding algorithm
to create the corridors.
The strength of this
layout is the high

complexity and
numerous branching
paths.

Open
Areas

Dungeons

These
dungeons

consist of
extremely
open spaces
(for a

dungeon) with

obstacles
(e.g., thin
walls) that
hinder free
manoeuvring.

Tactical
manoeuvring

has greater

Figure 16: Map from the game Enter the

Gungeon (Boris, 2019)

A combination of the
random walk algorithm

and cellular automata
was used to create the
open areas. Cellular
automata were applied

to smooth out the

generated layout.
Bezier curves were
used to create the
connecting corridors.
The generated layout

shows a vast open
space with organic

shapes. Although this

2022/23

Alessandro Bufalino 19017120

14

importance
here, and

corridors are

uncommon.

is different from the
rectangular nature of

the rooms shown in

Figure 16, the main

idea of having large
rooms with a couple of
small ones is achieved.

Table 1: Comparison of generated dungeon layouts with Dahlskog's classifications, real game examples, and the algorithms
used

In conclusion, the table demonstrates the alignment of the generated output with the dungeon types and
showcases its similarity to other games. This confirms the layout generator's capacity to cater to various
gameplay styles and preferences, making it an asset for game developers with diverse needs. By providing

a wide range of customization options and parameters, the layout generator supports a broad spectrum of
gameplay styles and genres beyond roguelike games.

8.2 Heuristic Evaluation of UI

Heuristic evaluation is a usability inspection method involving experts examining a product's user interface

to identify issues based on established heuristics (Nielsen and Molich, 1990). In general, heuristics are a

set of problem-solving strategies or principles that are based on practical experience and knowledge. In
the context of usability evaluation, heuristics are a set of general principles or guidelines used to evaluate
the usability of a product's user interface. As McKay (2013) states, "Design is communication, and a well-
designed user interface is good communication." Heuristic evaluation ensures effective communication
between users and the product. In cases where user feedback or testing is not feasible, Nielsen (1994)

asserts that heuristic evaluation helps "find the usability problems in the design" and provides insights for

improving usability. When a single evaluator conducts heuristic evaluation, biases can arise. Nielsen also
cautions that "the evaluator's own background and knowledge will unavoidably influence the evaluation."

To mitigate bias, McKay (2013) suggests that evaluators should "think like their users" by familiarizing

themselves with usability principles and considering different user profiles. Additionally, Nielsen (1994)
recommends refining and revaluating the user interface iteratively, as "iteration of the design is the best
way to improve the system."

Based on the decision of not gathering feedback from other users, a heuristic evaluation of the tool’s UI

interface was conducted, following Nielsen's ten usability heuristics (Nielsen, 2020):

Heuristic
Number

Heuristic Name Heuristic Explanation Heuristic Application

1 Visibility of system
status.

Keep users informed about what is
happening within the system
through appropriate feedback,
such as progress indicators or

notifications.

The UI present on the project
provides real time feedback in the
form of a progress bar, when
heavily performant algorithms are

freezing the inspector. This helps

users understand the process and
the progress being made.

2 Match between the
system and the real

world.

Use language and concepts that
are familiar to the user and make

sense in their context, making
information appear in a natural
and logical order.

Familiar terminology and concepts
from game development and

procedural generation are used to
ensure that users can easily
understand and utilize the tool.

3 User control and

freedom.

Allow users to easily undo or redo

their actions, providing them with
a sense of control and flexibility in

navigating the interface.

Users can Undo their actions a

maximum number of 3 times but
are not able to redo.

4 Consistency and
standards.

Use consistent elements, design
patterns, and terminology
throughout the interface. Adhere
to platform or industry standards

to make it easier for users to

The project maintains a consistent
design language and layout
throughout the UI, adhering to
common Unity inspector Elements

to keep the visual uniform.

2022/23

Alessandro Bufalino 19017120

15

understand and use the system.

5 Error prevention and

recovery.

Design the interface to minimize

the likelihood of user errors by
providing warnings, constraints, or
confirmation dialogs before critical

actions are taken.

Validations checks are present in

the code wherever possible in the
form of error console messages or
error window pop ups.

6 Recognition rather

than recall.

Make options, actions, and objects

visible and easily accessible to
reduce the cognitive load on the
user, so they do not have to
remember information from one
part of the interface to another.

Tool tips and labels are present

throughout the whole
implementation to help the user
remember the functionality of each
feature without having to memorize
the details.

7 Flexibility and

efficiency of use.

Cater to both novice and

experienced users by providing

shortcuts, customizability, and
adaptable interfaces that can be
tailored to the user's needs and
skill level.

The UI aims to be highly

customizable. However, the tool

currently offers only one layout,
which means that the UI is the
same no matter the experience.
Furthermore, the system does not
contain any short cuts.

8 Aesthetic and
minimalist design.

Create a visually appealing
interface that is uncluttered and

focuses on the essential elements.

The UI in the project is designed to
be straightforward and focused on

the essential elements necessary for
dungeon generation. This ensures
that users can easily navigate the
interface and perform tasks without

being overwhelmed.

9 Help users diagnose
and recover from

errors.

Have message errors that tell the
user the current issue with clear

language and a possible way of
fixing said issue.

When errors or issues are detected,
the system provides clear and

informative error messages that
guide users towards resolving the
problem.

10 Help and
documentation.

To provide an accessible
documentation for users who may
need additional support or
information’s about the system.

The wiki serves as a valuable
resource for the users, offering
detailed explanations of algorithms,
step-by-step guides on how to use

such algorithms and ways to access

the library. This ensures the user
uses the tool in the most efficient
way possible.

Table 2: Heuristic Evaluation of the Tool's UI - A summary of Nielsen's ten usability heuristics, their explanations, and their
application to the user interface of the dungeon generation tool.

The heuristic evaluation of the Tool’s UI
demonstrates that the tool largely adheres to
Nielsen's ten usability heuristics, indicating that it

provides a positive user experience. However, it
was identified that heuristic number 7 (table 2),
which pertains to flexibility and catering to users

with different experience levels, is not fully
satisfied. The tool's interface currently offers only
one layout and lacks shortcuts, which may limit

its adaptability for users with varying levels of
experience.

8.3 Non-Incorporated Features

During the development process, prioritizing the
core functionality of the tool necessitated

postponing or removing certain features from the

project. Two features that were cut include the
ratio of tiles that appear as side tiles when using
the WFC algorithm, which aimed to combat the
randomness of the algorithm output and provide

more control to the user. Additionally, a graph-
based algorithm using a similar graphing system
to the WFC algorithm was not included in the

current iteration, as it required further research
and development of a new graphing system to

accommodate this novel concept. The idea was
to have each room as a tile in the graph, and
within that tile, have multiple variables the user

could choose to stylize the room. When different
room tiles were connected, it would create a

corridor in the actual generation. This grammar-
based generation would have helped address one
of the key issues that PCG brings: control over
the generated output. With this algorithm, the
user would have had full control over what was

generated.

Another aspect that was not included due to
being out of scope is the ability to add gameplay

2022/23

Alessandro Bufalino 19017120

16

features, such as the implementation of doors,

traps, and other gameplay-specific elements.
These features were considered for inclusion in
the dungeon generation tool, but the decision

was made to ensure the tool remained versatile
and adaptable to a wide range of game genres
and design styles. Introducing gameplay-specific

elements could limit the tool's applicability.
Although the tool is tailored towards the
generation of "dungeons", the user could use the
tool to create a map for a vastly different type of

game. For example, Streets of Rogue (Matt
Dabrowski, 2019) is an action top-down game

that also creates its levels using PCG mechanics
and revolves around exploring different rooms in
buildings. The tool could potentially create a
room-to-room variant of the layout and be used

in this game genre, which is not focused on

"dungeons".

8.4 Evaluate the limitations of the tool and
areas for potential improvement

Although the tool has succeeded in its main goals

and objectives, it still has some limitations that
could be addressed in future iterations. One
limitation is the absence of certain features, such
as doors and other gameplay-specific elements,

which were excluded to maintain the tool's
versatility and broad applicability, as mentioned
previously. However, incorporating these

features during the 3D generation step, where
players can adjust the tile map on a per-tile
basis, could open the possibilities for including

such elements. By making this an optional step,
the tool's versatility and applicability can be
preserved, as users can choose to skip it if

desired. Integrating these features in a modular
fashion would allow users to select the level of
complexity they desire for their dungeon designs,

ultimately enhancing the tool's utility without
sacrificing its adaptability.

Several constraints and difficulties were

encountered when working with the Unity Editor.

One such issue was the self-editing feature,
which allowed users to move a pointer to change
the currently selected grid coordinate by pressing
buttons in the editor. This approach had its
limitations, as using arrow keys or the WASD

keys on the keyboard would be a more widely

accepted method for movement. However,
integrating these keys could result in
compatibility issues, as they may already have
binding actions within Unity or the operating

system. The addition of a Shift key press was
also considered but faced similar constraints.

Maintaining the editor button introduced another
issue: the pointer is drawn using gizmos, which
only update when the user hovers over the editor
scene window. Since the buttons are in the

inspector window, users receive no visual

feedback upon clicking a button and must move

their mouse back to the editor scene.

Figure 17: Showing the red gizmos (pointer) with the
buttons to move it in the inspector window

Furthermore, there were challenges encountered

in managing the order of some inspector

elements, particularly when dealing with lists
containing custom class types. Due to the
serialization process in the Unity Inspector,
certain elements, such as those in the PCG
Manager script, could not be ordered correctly.

The objective was to move the three lists

containing the map objects into a drop-down
window, along with the loading section, to keep
things compartmentalized. However, issues arose
when attempting to do so, as the serialization

process had difficulty handling custom class
types, unlike generic types such as integers.

The resolution to this issue would have required
further development time, as the drop-down
section needed to be created manually using the

PropertyDrawer class (Unity Technologies, 2013).
Unfortunately, due to time constraints, this
improvement could not be incorporated within

the scope of the project.

2022/23

Alessandro Bufalino 19017120

17

Figure 18: Showing the lists which keep the object tiles used
in the generation phase

Furthermore, the tool's performance could be
optimized to ensure the user has a better-quality
experience when using it. The current
performance may not be optimal, especially for

users with lower-end hardware. Addressing these
performance issues could make the tool more

accessible and efficient, ultimately improving the
overall user experience. By focusing on
optimization and performance enhancements,
the tool can reach a wider audience and provide

a more seamless experience for users with
various hardware configurations.

Lastly, conducting user testing in the future could
lead to a better tool by providing valuable
insights and feedback from a diverse group of

users. While the heuristic evaluation of the UI
offered a sufficient understanding of its
effectiveness, user testing can provide an

alternative perspective with less self-serving
bias. This can help identify overlooked issues or

limitations and highlight areas where the tool
excels. User testing can guide future
development and refinement, ensuring it caters
to various users and use cases. Moreover, it can
help validate proposed solutions for addressing

the tool's limitations, such as the inclusion of

gameplay-specific elements and performance
optimization. Ultimately, incorporating user
testing can result in a more robust, user-centric
tool that meets the evolving needs of game

developers.

9. Conclusion and recommendations

In conclusion, the project has successfully
achieved its goal of providing a downloadable

asset pack for the Unity game engine with a wide
range of algorithms users can choose from to

create their own 3D dungeons. Furthermore, with

each incorporated algorithm offering a wide

range of customization, the tool enables game
developers to create diverse and engaging
dungeon environments for a variety of game

genres. The project's success is evident by the
fact that all the project objectives, key
deliverables, and binary goals set at the

beginning of the project have been achieved.
Moreover, the tool's UI largely adheres to
Nielsen's ten usability heuristics, providing a
positive user experience in most areas, except

for heuristic 7, which pertains to flexibility and
catering to users with different experience levels.

For the next steps, it is recommended that user
testing be conducted to gather feedback and
further refine the tool, including addressing the

limitation in heuristic 7. Additionally,

improvements to the speed of the algorithms
should be explored, as well as the integration of
more algorithms to increase the versatility of the
project.

The project has the potential to be a fully viable

addition to the Unity store that can be sold and
used. Alternatively, with the wiki and library side
of the project, it could become a bank of
algorithms that any user can access and utilize.

10. References

van der Linden, R., Lopes, R. and Bidarra, R.
(2014). Procedural Generation of Dungeons. IEEE
Transactions on Computational Intelligence and

AI in Games, 6(1), pp.78–89.
[Accessed 5 December 2022]
Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=6661386

Shaker, N., Liapis, A., Togelius, J., Lopes, R. and
Bidarra, R. (2016). Constructive generation
methods for dungeons and levels. Procedural
Content Generation in Games, pp.31–55.

[Accessed 5 December 2022]

Available at:
https://link.springer.com/chapter/10.1007/978-
3-319-42716-4_3

Dahlskog, S., Björk, S. and Togelius, J. (2015).

Patterns, Dungeons and Generators. [online]

[Accessed 6 December 2022].
Available at:
http://julian.togelius.com/Dahlskog2015Patterns.
pdf

Rotman, D. (2013). How Technology Is

Destroying Jobs. [online] MIT Technology
Review.
[Accessed on 9 December 2022]
Available at:

https://www.technologyreview.com/2013/06/12/
178008/how-technology-is-destroying-jobs/.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6661386
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6661386
https://link.springer.com/chapter/10.1007/978-3-319-42716-4_3
https://link.springer.com/chapter/10.1007/978-3-319-42716-4_3
http://julian.togelius.com/Dahlskog2015Patterns.pdf
http://julian.togelius.com/Dahlskog2015Patterns.pdf
https://www.technologyreview.com/2013/06/12/178008/how-technology-is-destroying-jobs/
https://www.technologyreview.com/2013/06/12/178008/how-technology-is-destroying-jobs/

2022/23

Alessandro Bufalino 19017120

18

Unity Technologies, 2023. Scripting API:
Experimental.GraphView.GraphView. [online]
Unity Documentation. Available at:

https://docs.unity3d.com/ScriptReference/Experi
mental.GraphView.GraphView.html
[Accessed 20 Arpil 2023].

Code Respawn, 2022. Dungeon Architect:
Reviews. [online] Available at:
https://assetstore.unity.com/packages/tools/utili

ties/dungeon-architect-53895#reviews
[Accessed 20 April 2023].

nappin, 2022. Roguelike Generator Pro - Level &
Dungeon Procedural Generator. [online] Available
at:

https://assetstore.unity.com/packages/tools/leve

l-design/roguelike-generator-pro-level-dungeon-
procedural-generator-224345
[Accessed 20 April 2023].

Unity Technologies (2023). PropertyDrawer.

Unity Documentation. Available at:

https://docs.unity3d.com/ScriptReference/Proper
tyDrawer.html
[Accessed 20 April 2023].

Stephenson, S (2022) UK experiences a wave of
video game Start-ups, says TIGA. TIGA [online]
6 June. Available from: https://tiga.org/news/uk-

experiences-a-wave-of-video-game-start-ups-
says-tiga
[Accessed 2 October 2022]

Mckay, E.N. (2013). UI is communication: how to
design intuitive, user centered interfaces by

focusing on effective communication.
Amsterdam; Boston: Elsevier, Morgan
Kaufmann.

Available at:
https://books.google.co.uk/books?hl=en&lr=&id
=wNozxtKuOKcC&oi=fnd&pg=PP1&dq=effective+
UI&ots=v987j5xarU&sig=aYOCzG8gqSu5w89RtO

x5yXp-

mJk&redir_esc=y#v=onepage&q=effective%20U
I&f=false
[Accessed 5 December 2022]

Anderson, J., McRee, J., Wilson, R. and The

EffectiveUI Team (2010). Effective UI. ‘O’Reilly

Media, Inc. Available at:
https://books.google.co.uk/books?hl=en&lr=&id
=I7-IP5P-
gdMC&oi=fnd&pg=PR9&dq=how+to+build+UI&o

ts=tLC9oRBkEr&sig=-
w0pfNTH5COmOOUd9hLAqNyaFds&redir_esc=y#

v=onepage&q=UI&f=false
[Accessed 6 December 2022]

Dormans, J. (2010). Adventures in Level Design:

Generating Missions and Spaces for Action
Adventure Games. [online] Available at:

https://www.pcgworkshop.com/archive/dormans

2010adventures.pdf
[Accessed 11 Aug. 2022].

Khalifa, A., Perez-Liebana, D., Lucas, S. and
Togelius, J. (2011). General Video Game Level
Generation. [online] Available at:

http://www.diego-perez.net/papers/GVGLG.pdf
[Accessed 8 April 2023].

Smith, G. and Whitehead, J. (2010). Analyzing

the expressive range of a level generator.
Proceedings of the 2010 Workshop on Procedural

Content Generation in Games.
doi:https://doi.org/10.1145/1814256.1814260
[Accessed 14 April 2023].

Microsoft, 2023. Coding conventions. [online]

Available at: https://learn.microsoft.com/en-
us/dotnet/csharp/fundamentals/coding-
style/coding-conventions
[Accessed 20 April 2023].

Unity Technology (2005) Unity. [Computer

Program].
Available at: https://unity.com/
[Accessed 5 December 2022]

Interactive Data Visualization, inc. (2002)
SpeedTree. [Computer Program].
Available at: https://store.speedtree.com/

[Accessed 5 December 2022]

GitHub, Inc. (2008) GitHub [computer program].

Available from: https://github.com/
[Accessed 4 April 2023].

Axosoft, LLC. (2014) GitKraken [computer
program]. Available from:
https://www.gitkraken.com/

[Accessed 4 April 2023].

Autodesk. (1998) Maya [computer program].
Available from:

https://www.autodesk.com/products/maya/

[Accessed 4 April 2023].

Blender Foundation. (1994) Blender [computer
program]. Available from:
https://www.blender.org

[Accessed 4 April 2023].

Nielsen, J. (2020). 10 Heuristics for User
Interface Design. [online] Nielsen Norman Group.
Available at:

https://www.nngroup.com/articles/ten-usability-
heuristics/

[Accessed 1 April 2023].

Nielsen, J. and Molich, R. (1990). Heuristic
evaluation of user interfaces. Proceedings of the

SIGCHI conference on Human factors in

https://docs.unity3d.com/ScriptReference/Experimental.GraphView.GraphView.html
https://docs.unity3d.com/ScriptReference/Experimental.GraphView.GraphView.html
https://assetstore.unity.com/packages/tools/utilities/dungeon-architect-53895#reviews
https://assetstore.unity.com/packages/tools/utilities/dungeon-architect-53895#reviews
https://assetstore.unity.com/packages/tools/level-design/roguelike-generator-pro-level-dungeon-procedural-generator-224345
https://assetstore.unity.com/packages/tools/level-design/roguelike-generator-pro-level-dungeon-procedural-generator-224345
https://assetstore.unity.com/packages/tools/level-design/roguelike-generator-pro-level-dungeon-procedural-generator-224345
https://docs.unity3d.com/ScriptReference/PropertyDrawer.html
https://docs.unity3d.com/ScriptReference/PropertyDrawer.html
https://tiga.org/news/uk-experiences-a-wave-of-video-game-start-ups-says-tiga
https://tiga.org/news/uk-experiences-a-wave-of-video-game-start-ups-says-tiga
https://tiga.org/news/uk-experiences-a-wave-of-video-game-start-ups-says-tiga
https://books.google.co.uk/books?hl=en&lr=&id=wNozxtKuOKcC&oi=fnd&pg=PP1&dq=effective+UI&ots=v987j5xarU&sig=aYOCzG8gqSu5w89RtOx5yXp-mJk&redir_esc=y#v=onepage&q=effective%20UI&f=false
https://books.google.co.uk/books?hl=en&lr=&id=wNozxtKuOKcC&oi=fnd&pg=PP1&dq=effective+UI&ots=v987j5xarU&sig=aYOCzG8gqSu5w89RtOx5yXp-mJk&redir_esc=y#v=onepage&q=effective%20UI&f=false
https://books.google.co.uk/books?hl=en&lr=&id=wNozxtKuOKcC&oi=fnd&pg=PP1&dq=effective+UI&ots=v987j5xarU&sig=aYOCzG8gqSu5w89RtOx5yXp-mJk&redir_esc=y#v=onepage&q=effective%20UI&f=false
https://books.google.co.uk/books?hl=en&lr=&id=wNozxtKuOKcC&oi=fnd&pg=PP1&dq=effective+UI&ots=v987j5xarU&sig=aYOCzG8gqSu5w89RtOx5yXp-mJk&redir_esc=y#v=onepage&q=effective%20UI&f=false
https://books.google.co.uk/books?hl=en&lr=&id=wNozxtKuOKcC&oi=fnd&pg=PP1&dq=effective+UI&ots=v987j5xarU&sig=aYOCzG8gqSu5w89RtOx5yXp-mJk&redir_esc=y#v=onepage&q=effective%20UI&f=false
https://books.google.co.uk/books?hl=en&lr=&id=wNozxtKuOKcC&oi=fnd&pg=PP1&dq=effective+UI&ots=v987j5xarU&sig=aYOCzG8gqSu5w89RtOx5yXp-mJk&redir_esc=y#v=onepage&q=effective%20UI&f=false
https://books.google.co.uk/books?hl=en&lr=&id=I7-IP5P-gdMC&oi=fnd&pg=PR9&dq=how+to+build+UI&ots=tLC9oRBkEr&sig=-w0pfNTH5COmOOUd9hLAqNyaFds&redir_esc=y#v=onepage&q=UI&f=false
https://books.google.co.uk/books?hl=en&lr=&id=I7-IP5P-gdMC&oi=fnd&pg=PR9&dq=how+to+build+UI&ots=tLC9oRBkEr&sig=-w0pfNTH5COmOOUd9hLAqNyaFds&redir_esc=y#v=onepage&q=UI&f=false
https://books.google.co.uk/books?hl=en&lr=&id=I7-IP5P-gdMC&oi=fnd&pg=PR9&dq=how+to+build+UI&ots=tLC9oRBkEr&sig=-w0pfNTH5COmOOUd9hLAqNyaFds&redir_esc=y#v=onepage&q=UI&f=false
https://books.google.co.uk/books?hl=en&lr=&id=I7-IP5P-gdMC&oi=fnd&pg=PR9&dq=how+to+build+UI&ots=tLC9oRBkEr&sig=-w0pfNTH5COmOOUd9hLAqNyaFds&redir_esc=y#v=onepage&q=UI&f=false
https://books.google.co.uk/books?hl=en&lr=&id=I7-IP5P-gdMC&oi=fnd&pg=PR9&dq=how+to+build+UI&ots=tLC9oRBkEr&sig=-w0pfNTH5COmOOUd9hLAqNyaFds&redir_esc=y#v=onepage&q=UI&f=false
https://books.google.co.uk/books?hl=en&lr=&id=I7-IP5P-gdMC&oi=fnd&pg=PR9&dq=how+to+build+UI&ots=tLC9oRBkEr&sig=-w0pfNTH5COmOOUd9hLAqNyaFds&redir_esc=y#v=onepage&q=UI&f=false
https://www.pcgworkshop.com/archive/dormans2010adventures.pdf
https://www.pcgworkshop.com/archive/dormans2010adventures.pdf
http://www.diego-perez.net/papers/GVGLG.pdf
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://unity.com/
https://store.speedtree.com/
https://github.com/
https://www.gitkraken.com/
https://www.autodesk.com/products/maya/
https://www.blender.org/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/

2022/23

Alessandro Bufalino 19017120

19

computing systems Empowering people - CHI

’90. doi:https://doi.org/10.1145/97243.97281
[Accessed 1 April 2023].

Nielsen, J. (1994). Usability inspection methods.
Available at:
https://rauterberg.employee.id.tue.nl/lecturenotes/0H420
/Nielsen%5B1994%5D.pdf

[Accessed 1 April 2023].

Forsyth, D.R. (2008). Self-Serving Bias. In
International Encyclopedia of the Social Sciences.

Retrieved from
https://scholarship.richmond.edu/cgi/viewconten
t.cgi?article=1164&context=jepson-faculty-
publications

[Accessed 14 April 2023].

Moonlighter Wiki. (2018). Mini-Map. [online]
Available at:
https://moonlighter.fandom.com/wiki/Mini-Map
[Accessed 20 Apr. 2023].

Boris (2019). Dungeon Generation in Enter The
Gungeon. [online] BorisTheBrave.com. Available
at:
https://www.boristhebrave.com/2019/07/28/dun
geon-generation-in-enter-the-gungeon/.

[Accessed 1 April 2023].

Debenham, E. (2017). What’s coming in
Shattered Pixel Dungeon v0.6.0 pt.1. [online]
Shattered Pixel. Available at:

https://shatteredpixel.com/blog/whats-coming-
in-shattered-pixel-dungeon-v060.html
[Accessed 20 Apr. 2023].

Code Respawn. (2022). Dungeon Architect
[Software]. Unity Asset Store.

https://assetstore.unity.com/packages/tools/utili
ties/dungeon-architect-53895
[Accessed 5 April 2023].

Game Guides. (2016). Level 1: Into The Dark -
Legend of Grimrock Game Guide & Walkthrough |

gamepressure.com. [online] Available at:
https://guides.gamepressure.com/legendofgrimr
ock/guide.asp?ID=14823
[Accessed 20 Apr. 2023].

Nappin. (2022). Roguelike Generator Pro - Level
& Dungeon Procedural Generator [Software].
Unity Asset Store.
https://assetstore.unity.com/packages/tools/leve
l-design/roguelike-generator-pro-level-dungeon-

procedural-generator-224345

[Accessed 5 April 2023].

Hart, P., Nilsson, N. and Raphael, B. (1968). A
Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Transactions on
Systems Science and Cybernetics, [online] 4(2),
pp.100–107.

doi:https://doi.org/10.1109/tssc.1968.300136.

[Accessed 5 April 2023].

Dijkstra, E.W. (1959). A note on two problems in

connexion with graphs. Numerische Mathematik,
1(1), pp.269–271.
doi:https://doi.org/10.1007/bf01386390.

[Accessed 4 April 2023].

Bridson, R. (2007). Fast Poisson disk sampling in

arbitrary dimensions. ACM SIGGRAPH 2007
Sketches. Available at:
https://www.cs.ubc.ca/~rbridson/docs/bridson-
siggraph07-poissondisk.pdf

[Accessed 14 April 2023].

von Neumann, J. (1966). Theory of self-

reproducing automata. University of Illinois
Press. Available at:
https://cba.mit.edu/events/03.11.ASE/docs/Von

Neumann.pdf
[Accessed 14 April 2023].

Perlin, K. (1985). An image synthesizer. ACM
SIGGRAPH Computer Graphics, 19(3), 287-296.
Available at:

https://dl.acm.org/doi/pdf/10.1145/325165.325
247
[Accessed 14 April 2023].

Fournier, A., Fussell, D. and Carpenter, L.
(1982). Computer rendering of stochastic

models. Communications of the ACM, 25(6),
pp.371–384.
doi:https://doi.org/10.1145/358523.358553.
[Accessed 14 April 2023].

Witten, T.A. and Sander, L.M. (1981). Diffusion-
Limited Aggregation, a Kinetic Critical
Phenomenon. Physical Review Letters, 47(19),
pp.1400–1403.
doi:https://doi.org/10.1103/physrevlett.47.1400.

[Accessed 14 April 2023].

Prim, R.C. (1957). Shortest Connection Networks
And Some Generalizations. Bell System Technical
Journal, 36(6), pp.1389–1401.

doi:https://doi.org/10.1002/j.1538-
7305.1957.tb01515.x.
[Accessed 14 April 2023].

Lindenmayer, A. (1968). Mathematical models
for cellular interaction in development. Journal of

Theoretical Biology, 18(3), 280-299.
Available at: https://doi.org/10.1016/0022-
5193(68)90079-9
[Accessed 14 April 2023].

Lorensen, W.E. and Cline, H.E. (1987). Marching

cubes: A high resolution 3D surface construction
algorithm. ACM SIGGRAPH Computer Graphics,
21(4), pp.163–169.
doi:https://doi.org/10.1145/37402.37422.

Commented [AB(1]: Self note: to check

Commented [AB(2]: Self note: to check

https://rauterberg.employee.id.tue.nl/lecturenotes/0H420/Nielsen%5B1994%5D.pdf
https://rauterberg.employee.id.tue.nl/lecturenotes/0H420/Nielsen%5B1994%5D.pdf
https://scholarship.richmond.edu/cgi/viewcontent.cgi?article=1164&context=jepson-faculty-publications
https://scholarship.richmond.edu/cgi/viewcontent.cgi?article=1164&context=jepson-faculty-publications
https://scholarship.richmond.edu/cgi/viewcontent.cgi?article=1164&context=jepson-faculty-publications
https://moonlighter.fandom.com/wiki/Mini-Map
https://www.boristhebrave.com/2019/07/28/dungeon-generation-in-enter-the-gungeon/
https://www.boristhebrave.com/2019/07/28/dungeon-generation-in-enter-the-gungeon/
https://shatteredpixel.com/blog/whats-coming-in-shattered-pixel-dungeon-v060.html
https://shatteredpixel.com/blog/whats-coming-in-shattered-pixel-dungeon-v060.html
https://assetstore.unity.com/packages/tools/utilities/dungeon-architect-53895
https://assetstore.unity.com/packages/tools/utilities/dungeon-architect-53895
https://guides.gamepressure.com/legendofgrimrock/guide.asp?ID=14823
https://guides.gamepressure.com/legendofgrimrock/guide.asp?ID=14823
https://assetstore.unity.com/packages/tools/level-design/roguelike-generator-pro-level-dungeon-procedural-generator-224345
https://assetstore.unity.com/packages/tools/level-design/roguelike-generator-pro-level-dungeon-procedural-generator-224345
https://assetstore.unity.com/packages/tools/level-design/roguelike-generator-pro-level-dungeon-procedural-generator-224345
https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf
https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf
https://cba.mit.edu/events/03.11.ASE/docs/VonNeumann.pdf
https://cba.mit.edu/events/03.11.ASE/docs/VonNeumann.pdf
https://dl.acm.org/doi/pdf/10.1145/325165.325247
https://dl.acm.org/doi/pdf/10.1145/325165.325247
https://doi.org/10.1016/0022-5193(68)90079-9
https://doi.org/10.1016/0022-5193(68)90079-9

2022/23

Alessandro Bufalino 19017120

20

[Accessed 14 April 2023].

12. Ludology

Mossmouth (2013) Spelunky. [Video game].
Mossmouth. Available at:

https://store.steampowered.com/app/239350/Sp
elunky/.
[Accessed 6 December 2022]

Dice (2011) Battlefield 3. [Video game].
Electronic Arts. Available at:

https://store.steampowered.com/app/1238820/B
attlefield_3/.
[Accessed 6 December 2022]

Nincalis, Inc., Edmund McMillen (2014) The

Binding Of Isaac Rebirth. [Video game]. Nicalis,
Inc. Available at:
https://store.steampowered.com/app/250900/Th
e_Binding_of_Isaac_Rebirth/.
[Accessed 6 December 2022]

Dodge Roll (2016) Enter the Gungeon. [Video
game]. Devolver Digital.

Available at:

https://store.steampowered.com/app/311690/En
ter_the_Gungeon/. [Accessed 6 December 2022]

Brace Yourself Games, 2015. Crypt of the
NecroDancer. [video game] Brace Yourself
Games. Available from:

https://braceyourselfgames.com/crypt-of-the-

necrodancer/
[Accessed 22 March 2023].

Epyx, Inc. (1985) Rogue. [Video game]. Pixel

Games UK. Available from:
https://store.steampowered.com/app/1443430/R

ogue/
[Accessed 20 April 2023].

Matt Dabrowski (2019) Streets of Rouge. [Video

Game]. tinyBuild. Available From:
https://store.steampowered.com/app/512900/St

reets_of_Rogue/
[Accessed 22 March 2023].

Appendix A: Project plan

Date of

the week

Tasks Done/started Brief summary

of outcomes achieved, research

or practical aspect completed

Questions arising

and/or tasks to be

taken forward

04/10/2022 • Opened and started the

repo
• Started logbook
• Started Proposal

document

Started the github repo for version

control
Started to gather sources for the
proposal

31/10/2022 • Added Drunk walk
• Movement in inspector

• L_system added
• Basic tile set to help

with testing
• Voronoi algo added

Added some of the most basic
algorithms that were listed in the

proposal
Implement a tile set which will be

used to simulate an actual level

02/10/2022 • First very random
room/level maker

• A* pathfinding

Made the first dungeon generator
using a randomiser built by unity

03/10/2022 • Cellular automata added
• 3D drunk walk

• Delaunay triangulation

Added more of the basic algorithms 3D drunk walk will
should build on the 3D

Perlin worms

04/10/2022 • Started wave function
collapse

Started to work on the wave
function collapse

07/10/2022 • Find walls algo to signal

outer walls

Algorithm to find the outer tile and

tag that tile as a wall

08/10/2022 • Perlin noise in 2D and
3D

• Start of fixing the whole
codebase and joining fix
together

Started to tidy up the codebase and
form the first few mixes

https://store.steampowered.com/app/239350/Spelunky/
https://store.steampowered.com/app/239350/Spelunky/
https://store.steampowered.com/app/1238820/Battlefield_3/
https://store.steampowered.com/app/1238820/Battlefield_3/
https://store.steampowered.com/app/250900/The_Binding_of_Isaac_Rebirth/
https://store.steampowered.com/app/250900/The_Binding_of_Isaac_Rebirth/
https://store.steampowered.com/app/311690/Enter_the_Gungeon/
https://store.steampowered.com/app/311690/Enter_the_Gungeon/
https://braceyourselfgames.com/crypt-of-the-necrodancer/
https://braceyourselfgames.com/crypt-of-the-necrodancer/
https://store.steampowered.com/app/1443430/Rogue/
https://store.steampowered.com/app/1443430/Rogue/
https://store.steampowered.com/app/512900/Streets_of_Rogue/
https://store.steampowered.com/app/512900/Streets_of_Rogue/

2022/23

Alessandro Bufalino 19017120

21

10/10/2022 • Decided on the UI
method to implement in

the game

Decided on the in-Game system UI
will be dealt with a state machine

13/10/2022

• More Perlin noise

features
• Perlin noise worm

started

• Error message added in
case user inputs
something not valid

Added an error message pop up and
worked on more Perlin noise fixes

Is there a possibility to
add a pop up in editor

run time?

19/10/2022 • Started research report Started to gather sources for the How can the artefact be

an ethical problem?

10/12/2022 • Final draft of the report

was finished

The final draft of the research report

was done, all that is left is to fix the
references

15/12/2022 • Added diamond square
algorithm

Implemented diamond square algo

to have a variant of Perlin noise

Although seems to work
it doesn't form true

sections which are
needed for the room
generation, will need

more looking at

20/12/2022 • Added Binary partition
system (BPS)

• Added prim’s algo

BPS will be used to create rooms in
a tidier manner but keeping the

randomization
Prim’s algorithm will allow a singular
path to be fetched from a
triangulation, will be used to create

the corridor

27/12/2022 • Added the first iteration

of the GraphView
• Remade the WFC

algorithm due to
previous issues

The player can create the rules in a

graph style inspector window.

The GraphView library

API provided from Unity
is in an experimental
stage, whilst
development there have
been some issued due to

the above-mentioned

status.

28/12/2022 • Standardisation of
classes

With Every algorithm using similar
structure now I can mix and match
algorithms

1/01/2023 • Rewriting of most

algorithms for better
work performance

All the algorithms are now able to

be called from a central script

With the centralization of

the algorithms when
making the UI it should
be a simple one-line

function call for better
organisation

3/01/2023 • Different rulesets have

been added for their
respective algorithms

There are now objects where the

player can store its rules or tiles to
be called from the algorithms

8/01/2023 • The user can now
generate the dungeon
using its own tile sets

The user is given a choice of what
wall tiles and floor tiles to be used
when generating the dungeon

When generating the
dungeon there is a
chance that more than

30000 objects are used,

this really kills
performance and there
will need to be a way to
create chunks to load in
and out for maximum

performance

11/01/2023 • Added the main

algorithm generation
component to the top
toolbar of the unity

The user can now spawn the

generator using the tool bar at the
top

2022/23

Alessandro Bufalino 19017120

22

editor

13/01/2023 • Added a new node for

the WFC
• Added tooltips to the UI

in the inspector

This new node greatly increases the

workflow by being only one node
instead of a web of nodes

Every UI element now has a tooltip
that explains in detail what that
button does and its effect

There is yet no way to

quickly spawn the nodes

17/01/2023 • Perlin worms algorithms
added

Last of the required algorithm has
been added.

The algorithm although
working fine is not what
was expected and only
“works” in certain

scenarios therefore
extensive testing will

need to be done

23/01/2023 • Bezier path added
• Dynamic sized corridors
• Recorder the first draft

video for the prototype

hand in

Now the user can generate a
corridor with a curving direction

The user can now decide the size of

the corridor, this was originally done

due to marching cubes algorithms
only working with corridors which
are 3 floor tiles wide

There are cases where
the ending of the Bezier
doesn’t reach the ending
due to how the function

works.

26/01/2023 • First iteration of a
functional UI in the

inspector for one of the
algorithms

The Random Walk algorithm now

can be fully used to its full potential

with all the possible generation

choice being neatly laid out.

Should try to have the UI
standardised and be

under the call of a
function to make the

modifying aspect much
easier in the future

29/01/2023 • Room to room
generation

The user can now generate a
random using a room-to-room

technique

The room-to-room
technique was the last of

the needed types of
dungeons.

31/01/2023 • Voronoi room to room
generation

• Undo button

More choices of how to generate the
dungeon have been added

An Undo button has been added to
allow the player to return 1 step
behind, to increase ease of use

17/02/2023 • Added the ability to
create rooms that are
not PCG

• Tidied up the project

ready to become an
asset

• Chunk system added so
only the chunks where

the player is get

rendered once the game

starts

The player can now create rooms

that are not PCG but will be placed

randomly around the map, this is to

allow a more familiar feel to the

player whilst still achieving the usual

PCG scale

The player can now drag any entity

into a list, and it will dynamically

only render in those chunks to save

on performance instead of drawing

the whole dungeon.

18/02/2023 • Fixed many bugs

• Improved performance
• Allow the player to

create a canvas where
the generation can

happen to any size

desired

• Added dead end corridor
• Dynamic amount of

undo's
• Refactoring of the code

Bezier curves didn’t finish in the

right spot

Flood fill algorithm gave “out of

stack error”, now fixed

Before the was a cap on the size of

the canvas due to some limitation

but now it's been lifted

2022/23

Alessandro Bufalino 19017120

23

• New UI
• The player can now save

the result of the

generated dungeon

Corridors that lead to nowhere to

increase the gameplay design

options

I can now set how many undo the

user gets

The new UI aims to be more

streamline as it lowers the number

of things on the screen to.

After the Player has finished

creating the template of his

dungeon, before generating it he is

asked if he wants to save to file for

future use, this is useful to give the

user a way to save its favourite

dungeons with no worry of losing

them.

3/03/23 • Added Perlin worms
algorithm

• Added the ability for the
player to decide the

chunks to draw
• Started the

wiki/documentation

Perlin worms was one of the main

algorithms that until now was

missing but has now been

successfully added.

The player when starting the game

can now decide on the amount of

the map to show using a built-in

chunk system for max performance.

The wiki on the Github has been

started so the user knows what to

do and what to expect from the

project once it will be made into an

asset.

6/03/23 • Reformatting ready to

be made into a library

• L-system algorithms

additional changes

• Fixed a lot of bugs

A lot of formatting was done to the

code to help to achieve the most

functional, effective, and intuitive.

L-system now has an integrated

macro system where the player can

implement the generation of rooms

into the algorithm instead of

building an afterthought, this was

done to try and keep most of the

algorithms generate different stuff

from each other, giving the player

more choice.

Some major UI bugs, roadblocks

and performance uplifts were made

to improve the experience.

10/03/23 • Asset pack created

• More bug fixes

The final goal of the project has

been achieved, the user can now

instal the asset pack via the asset

pack menu to be used in any of its

desired projects.

For the asset pack I have

had to create a new git
hub repo where it is
hosted, and I will need
to investigate how to

properly push to release
new versions correctly

12/03/23 • Wiki structure started In the repo with the asset the user

can now go into the wiki and read

the documentation about how to use

the asset and much more info.

20/03/23 • Fixed the Poissant issue The Poissant algorithm is used to

2022/23

Alessandro Bufalino 19017120

24

• Started the report help the user populate the dungeon

created some issues and usability

things where fixed

24/03/23 • Added the ability to self-
edit the outcome of the

dungeon

The user can now self-editor and

change specific tiles on the grid to

suit its gameplay more, like opening

certain paths or closing them

The UI to use the editing
tool is not the best due

to the limitations of the
Editor itself

05/04/23 • Changed some of the

tooltips and order of UI
elements to give the
player more context

• Implemented

multithreading

Additional tooltips have been added

to the whole project to help the

player understand what each

element does.

Massive improvement in

performance for some algorithm has

achieved by parallelizing he loops

between multiple thread.

Using multiple threads to

achieve tasks could lead
to thread issues where
some tasks are done
before others, therefore

a lot of testing needs to
be done to make sure no
issue like that pop up

18/04/23 • Added more tooltips to

explain more mechanics

• Took out the debris
generation for the
vertices generation
method

The vertices generation of the

dungeon does not create chunks it is

meant to be a way for the user to

export the generated dungeon to

the wanted software. The debris

need the chunk system to function

efficiently.

Appendix B: Project Timeline

October Final proposal to be submitted by (25 oct)

November Start research.
Implement the basis of all 5 algorithms in 2D.
Start to test with some mixes of algorithms to create the
first maps.

4 days
1 day
17 days
7 days

December Finalise research report.

Implement Cellular automata on the rooms themselves.

12 days

3 days

January Implement more intricate maps and mixes of
algorithms, start to add more levels to the maps.
Implement the basis of the UI for the User.

Assessed presentation (23 jan).

10 days

2 days

February Implement Optimisations.
Start final report.

5 days
10 days

March Continue with the report. 30 days
April Hand-in (24 April). 24 days
May Viva.

2022/23

Alessandro Bufalino 19017120

25

Appendix C: Assets used in the Project

Unity Technologies, [2023]. [FBX Exporter]. Available at:
https://docs.unity3d.com/Packages/com.unity.formats.fbx@2.0/manual/index.html

[Accessed 20 April 2023].

Appendix D: Algorithms Terminology and Explanation

A* Pathfinding: A search algorithm used to find the shortest path between two points on a grid or graph,
taking into account obstacles and movement costs. It employs a heuristic function to estimate the
remaining distance to the goal, allowing it to focus on the most promising paths and avoid unnecessary

exploration (Hart, Nilsson & Raphael, 1968).

Dijkstra's Algorithm: A graph search algorithm that finds the shortest path between a starting node and all
other nodes in a weighted graph. It iteratively selects the unvisited node with the smallest known distance
from the starting node and updates the distances to its neighbors (Dijkstra, 1959).

Binary Space Partitioning: A method of recursively dividing a space into smaller, non-overlapping sections

to create a tree-like data structure. It is often used in level design for organizing scene elements,
optimizing rendering, and generating procedural layouts (Fuchs, Kedem & Naylor, 1980).

Poisson Disk Sampling: A sampling method that generates points uniformly distributed across a surface

while maintaining a minimum distance between them. This technique helps create natural-looking
distributions of objects, such as trees, rocks, or stars (Bridson, 2007).

Bezier Curves: Parametric curves used to create smooth and controllable paths or shapes, often employed
in graphic design, animation, and pathfinding. They are defined by a set of control points that influence
the curve's shape without necessarily lying on the curve itself.

Voronoi Diagrams: A partitioning of a plane into regions based on the distance to a set of input points.
Each region, called a Voronoi cell, contains one input point and consists of all points closer to that point

than to any other input point. Voronoi diagrams are used in various applications, including spatial analysis,
procedural generation, and computational geometry.

Cellular Automata: A computational model that simulates the behavior of cells on a grid, with each cell's
state determined by the states of its neighbors according to predefined rules. Cellular automata can model
complex, emergent behavior and are used in various applications, such as procedural generation,
simulation, and pattern recognition (von Neumann, 1966).

Perlin Noise: A gradient noise function used to generate coherent noise patterns, often employed in
procedural texture and terrain generation. Perlin noise produces smooth, natural-looking variations,
making it suitable for creating realistic landscapes, clouds, and other organic structures (Perlin, 1985).

Diamond-Square Algorithm: A fractal-based terrain generation algorithm that uses a midpoint

displacement technique to create realistic heightmaps. It operates by recursively subdividing a square grid

into smaller squares and perturbing their heights based on a random offset (Fournier, Fussell & Carpenter,
1982).

Perlin Worms: A method of generating organic-looking tunnels or caves using Perlin noise to influence the

direction of a random walk. This technique creates smoothly curving paths that can resemble the burrows
of worms or other natural features (Perlin, 1985).

Diffusion-Limited Aggregation: A simulation of particle growth based on the diffusion and aggregation of
particles. Particles are released randomly and move through a medium until they encounter a stationary
structure, at which point they aggregate. This technique is used for procedural generation of organic

structures, such as coral, snowflakes, or fractal patterns (Witten & Sander, 1981).

https://docs.unity3d.com/Packages/com.unity.formats.fbx@2.0/manual/index.html

2022/23

Alessandro Bufalino 19017120

26

Wave Function Collapse: A constraint-based procedural generation algorithm that collapses a set of

possible patterns into a single output based on input constraints. The algorithm iteratively observes and
collapses the least constrained cell, generating coherent structures that satisfy the input constraints.

Random Walk: A stochastic process that generates a path by taking random steps in any direction from
the current position, often used in procedural terrain and level generation. The random walk can create
organic, unpredictable paths and structures, making it suitable for generating caves, mazes, or other

irregular features.

Delaunay Triangulation: A technique for creating a set of non-overlapping triangles from a set of input
points, with the property that no input point is inside the circumcircle of any triangle. Delaunay

triangulations maximize the minimum angle of all the triangles, producing well-shaped, non-skewed
triangles. They are used in various applications, such as mesh generation, interpolation, and

computational geometry.

Prim's Algorithm: A greedy algorithm for finding the minimum spanning tree of a connected, undirected
graph. It starts with an arbitrary vertex and iteratively adds the edge with the smallest weight that

connects a visited vertex to an unvisited vertex, often used for generating mazes and optimizing network

connectivity (Prim, 1957).

Flood Fill: An algorithm for filling a connected region in a grid with a specified value. It starts from a seed
point and recursively or iteratively replaces the neighboring cells with the target value if they match the
original value, often used in image processing, level generation, and pathfinding (Moore, 1959).

L-Systems: A grammar based system used to model the growth of plants and other fractal structures
through the recursive application of production rules. An L-system consists of an initial axiom and a set of
production rules that transform strings of symbols, often used in procedural modeling, computer graphics,
and biological modeling (Lindenmayer, 1968).

Marching Cubes: A surface extraction algorithm for creating polygonal representations of isosurfaces in 3D
scalar fields, such as density or elevation data. It operates by examining each cube of the field and

determining the intersections of the isosurface with the cube edges, then constructing triangles to
approximate the surface, often used in terrain and model generation, medical imaging, and scientific
visualization (Lorensen & Cline, 1987).

Appendix E: Documentation/Wiki

The Dungeon Forge project includes a comprehensive Wiki, which serves as a valuable resource for users
to understand the tool and its functionalities. The Wiki was created to provide a clear and concise guide on

how to use the tool, its various features, and the underlying algorithms and techniques used in its
development. By making this information easily accessible, users can quickly familiarize themselves with
the project and potentially contribute to its improvement. The Wiki can be found on the project's GitHub
page at the following link: https://github.com/AlessandroBufalino3115/Dungeon-Forge/wiki

https://github.com/AlessandroBufalino3115/Dungeon-Forge/wiki

